OCCAM's RAZOR
Occam's razor (also Ockham's razor; Latin: lex parsimoniae "law of parsimony") is a problem-solving principle attributed to William of Ockham (c. 1287–1347), who was an English Franciscan friar, scholastic philosopher, and theologian. His principle states that among competing hypotheses, the one with the fewest assumptions should be selected.
In science, Occam's razor is used as a heuristic guide in the development of theoretical models, rather than as a rigorous arbiter between candidate models.[1][2] In the scientific method, Occam's razor is not considered an irrefutable principle of logic or a scientific result; the preference for simplicity in the scientific method is based on the falsifiability criterion. For each accepted explanation of a phenomenon, there may be an extremely large, perhaps even incomprehensible, number of possible and more complex alternatives. Since one can always burden failing explanations with ad hoc hypotheses to prevent them from being falsified, simpler theories are preferable to more complex ones because they are more testable.
Science and the scientific method[edit]
In science, Occam's razor is used as a heuristic to guide scientists in developing theoretical models rather than as an arbiter between published models.[1][2] In physics, parsimony was an important heuristic in Albert Einstein's formulation of special relativity,[40][41] in the development and application of the principle of least action by Pierre Louis Maupertuis and Leonhard Euler, and in the development of quantum mechanics by Max Planck, Werner Heisenberg and Louis de Broglie.
In chemistry, Occam's razor is often an important heuristic when developing a model of a reaction mechanism.[44][45]Although it is useful as a heuristic in developing models of reaction mechanisms, it has been shown to fail as a criterion for selecting among some selected published models.[2] In this context, Einstein himself expressed caution when he formulated Einstein's Constraint: "It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience". An often-quoted version of this constraint (which cannot be verified as posited by Einstein himself)[46] says "Everything should be kept as simple as possible, but no simpler."
In the scientific method, parsimony is an epistemological, metaphysical or heuristic preference, not an irrefutable principle of logic or a scientific result.[3][4][47] As a logical principle, Occam's razor would demand that scientists accept the simplest possible theoretical explanation for existing data. However, science has shown repeatedly that future data often support more complex theories than do existing data. Science prefers the simplest explanation that is consistent with the data available at a given time, but the simplest explanation may be ruled out as new data become available.[1][4] That is, science is open to the possibility that future experiments might support more complex theories than demanded by current data and is more interested in designing experiments to discriminate between competing theories than favoring one theory over another based merely on philosophical principles.[3][4][5]
When scientists use the idea of parsimony, it has meaning only in a very specific context of inquiry. Several background assumptions are required for parsimony to connect with plausibility in a particular research problem. The reasonableness of parsimony in one research context may have nothing to do with its reasonableness in another. It is a mistake to think that there is a single global principle that spans diverse subject matter.[5]
It has been suggested that Occam's razor is a widely accepted example of extraevidential consideration, even though it is entirely a metaphysical assumption. There is little empirical evidence that the world is actually simple or that simple accounts are more likely to be true than complex ones.[48]
Most of the time, Occam's razor is a conservative tool, cutting out crazy, complicated constructions and assuring that hypotheses are grounded in the science of the day, thus yielding "normal" science: models of explanation and prediction.[according to whom?] There are, however, notable exceptions where Occam's razor turns a conservative scientist into a reluctant revolutionary. For example, Max Planck interpolated between the Wien and Jeans radiation laws and used Occam's razor logic to formulate the quantum hypothesis, even resisting that hypothesis as it became more obvious that it was correct.[2]
Appeals to simplicity were used to argue against the phenomena of meteorites, ball lightning, continental drift, and reverse transcriptase. One can argue for atomic building blocks for matter, because it provides a simpler explanation for the observed reversibility of both mixing and chemical reactions as simple separation and rearrangements of atomic building blocks. At the time, however, the atomic theory was considered more complex because it implied the existence of invisible particles that had not been directly detected. Ernst Mach and the logical positivists rejected John Dalton's atomic theory until the reality of atoms was more evident in Brownian motion, as shown by Albert Einstein.[49]
In the same way, postulating the aether is more complex than transmission of light through a vacuum. At the time, however, all known waves propagated through a physical medium, and it seemed simpler to postulate the existence of a medium than to theorize about wave propagation without a medium. Likewise, Newton's idea of light particles seemed simpler than Christiaan Huygens's idea of waves, so many favored it. In this case, as it turned out, neither the wave—nor the particle—explanation alone suffices, as light behaves like waves and like particles.
Three axioms presupposed by the scientific method are realism (the existence of objective reality), the existence of natural laws, and the constancy of natural law. Rather than depend on provability of these axioms, science depends on the fact that they have not been objectively falsified. Occam's razor and parsimony support, but do not prove, these axioms of science. The general principle of science is that theories (or models) of natural law must be consistent with repeatable experimental observations. This ultimate arbiter (selection criterion) rests upon the axioms mentioned above.[4]
There are examples where Occam's razor would have favored the wrong theory given the available data. Simplicity principles are useful philosophical preferences for choosing a more likely theory from among several possibilities that are all consistent with available data. A single instance of Occam's razor favoring a wrong theory falsifies the razor as a general principle.[4] Michael Lee and others[50] provide cases in which a parsimonious approach does not guarantee a correct conclusion and, if based on incorrect working hypotheses or interpretations of incomplete data, may even strongly support a false conclusion.
If multiple models of natural law make exactly the same testable predictions, they are equivalent and there is no need for parsimony to choose a preferred one. For example, Newtonian, Hamiltonian and Lagrangian classical mechanics are equivalent. Physicists have no interest in using Occam's razor to say the other two are wrong. Likewise, there is no demand for simplicity principles to arbitrate between wave and matrix formulations of quantum mechanics. Science often does not demand arbitration or selection criteria between models that make the same testable predictions.[4]
Biology[edit]
Biologists or philosophers of biology use Occam's razor in either of two contexts both in evolutionary biology: the units of selection controversy and systematics. George C. Williams in his book Adaptation and Natural Selection (1966) argues that the best way to explain altruism among animals is based on low-level (i.e., individual) selection as opposed to high-level group selection. Altruism is defined by some evolutionary biologists (e.g., R. Alexander, 1987; W. D. Hamilton, 1964) as behavior that is beneficial to others (or to the group) at a cost to the individual, and many posit individual selection as the mechanism that explains altruism solely in terms of the behaviors of individual organisms acting in their own self-interest (or in the interest of their genes, via kin selection). Williams was arguing against the perspective of others who propose selection at the level of the group as an evolutionary mechanism that selects for altruistic traits (e.g., D. S. Wilson & E. O. Wilson, 2007). The basis for Williams' contention is that of the two, individual selection is the more parsimonious theory. In doing so he is invoking a variant of Occam's razor known as Morgan's Canon: "In no case is an animal activity to be interpreted in terms of higher psychological processes, if it can be fairly interpreted in terms of processes which stand lower in the scale of psychological evolution and development." (Morgan 1903).
However, more recent biological analyses, such as Richard Dawkins' The Selfish Gene, have contended that Morgan's Canon is not the simplest and most basic explanation. Dawkins argues the way evolution works is that the genes propagated in most copies end up determining the development of that particular species, i.e., natural selection turns out to select specific genes, and this is really the fundamental underlying principle that automatically gives individual and group selection as emergent features of evolution.
Zoology provides an example. Muskoxen, when threatened by wolves, form a circle with the males on the outside and the females and young on the inside. This is an example of a behavior by the males that seems to be altruistic. The behavior is disadvantageous to them individually but beneficial to the group as a whole and was thus seen by some to support the group selection theory.
Systematics is the branch of biology that attempts to establish genealogical relationships among organisms. It is also concerned with their classification. There are three primary camps in systematics: cladists, pheneticists, and evolutionary taxonomists. The cladists hold that genealogy alone should determine classification and pheneticists contend that similarity over propinquity of descent is the determining criterion while evolutionary taxonomists say that both genealogy and similarity count in classification.[51]
It is among the cladists that Occam's razor is to be found, although their term for it is cladistic parsimony. Cladistic parsimony (or maximum parsimony) is a method of phylogenetic inference in the construction of types of phylogenetic trees (more specifically, cladograms). Cladograms are branching, tree-like structures used to represent lines of descent based on one or more evolutionary changes. Cladistic parsimony is used to support the hypotheses that require the fewest evolutionary changes. For some types of tree, it consistently produces the wrong results, regardless of how much data is collected (this is called long branch attraction). For a full treatment of cladistic parsimony, see Elliott Sober's Reconstructing the Past: Parsimony, Evolution, and Inference (1988). For a discussion of both uses of Occam's razor in biology, see Sober's article "Let's Razor Ockham's Razor" (1990).
Other methods for inferring evolutionary relationships use parsimony in a more traditional way. Likelihood methods for phylogeny use parsimony as they do for all likelihood tests, with hypotheses requiring few differing parameters (i.e., numbers of different rates of character change or different frequencies of character state transitions) being treated as null hypotheses relative to hypotheses requiring many differing parameters. Thus, complex hypotheses must predict data much better than do simple hypotheses before researchers reject the simple hypotheses. Recent advances employ information theory, a close cousin of likelihood, which uses Occam's razor in the same way.
Francis Crick has commented on potential limitations of Occam's razor in biology. He advances the argument that because biological systems are the products of (an ongoing) natural selection, the mechanisms are not necessarily optimal in an obvious sense. He cautions: "While Ockham's razor is a useful tool in the physical sciences, it can be a very dangerous implement in biology. It is thus very rash to use simplicity and elegance as a guide in biological research."[52]
In biogeography, parsimony is used to infer ancient migrations of species or populations by observing the geographic distribution and relationships of existing organisms. Given the phylogenetic tree, ancestral migrations are inferred to be those that require the minimum amount of total movement.
Religion[edit]
In the philosophy of religion, Occam's razor is sometimes applied to the existence of God. William of Ockham himself was a Christian. He believed in God, and in the authority of Scripture; he writes that "nothing ought to be posited without a reason given, unless it is self-evident (literally, known through itself) or known by experience or proved by the authority of Sacred Scripture."[53] Ockham believed that an explanation has no sufficient basis in reality when it does not harmonize with reason, experience, or the Bible. However, unlike many theologians of his time, Ockham did not believe God could be logically proven with arguments. To Ockham, science was a matter of discovery, but theology was a matter of revelation and faith. He states: "only faith gives us access to theological truths. The ways of God are not open to reason, for God has freely chosen to create a world and establish a way of salvation within it apart from any necessary laws that human logic or rationality can uncover."[54]
St. Thomas Aquinas, in the Summa Theologica, uses a formulation of Occam's razor to construct an objection to the idea that God exists, which he refutes directly with a counterargument:[55]
In turn, Aquinas answers this with the quinque viae, and addresses the particular objection above with the following answer:
Rather than argue for the necessity of a god, some theists base their belief upon grounds independent of, or prior to, reason, making Occam's razor irrelevant. This was the stance of Søren Kierkegaard, who viewed belief in God as a leap of faith that sometimes directly opposed reason.[56] This is also the doctrine of Gordon Clark's presuppositional apologetics, with the exception that Clark never thought the leap of faith was contrary to reason (see also Fideism).
Various arguments in favor of God establish God as a useful or even necessary assumption. Contrastingly some anti-theists hold firmly to the belief that assuming the existence of God introduces unnecessary complexity (Schmitt 2005, e.g., the Ultimate Boeing 747 gambit).
Another application of the principle is to be found in the work of George Berkeley (1685–1753). Berkeley was an idealist who believed that all of reality could be explained in terms of the mind alone. He invoked Occam's razor against materialism, stating that matter was not required by his metaphysic and was thus eliminable. One potential problem with this belief is that it's possible, given Berkeley's position, to find solipsism itself more in line with the razor than a God-mediated world beyond a single thinker.
Occam's razor may also be recognized in the apocryphal story about an exchange between Pierre-Simon Laplace and Napoleon. It is said that in praising Laplace for one of his recent publications, the emperor asked how it was that the name of God, which featured so frequently in the writings of Lagrange, appeared nowhere in Laplace's. At that, he is said to have replied, "It's because I had no need of that hypothesis."[57] Though some point to this story as illustrating Laplace's atheism, more careful consideration suggests that he may instead have intended merely to illustrate the power of methodological naturalism, or even simply that the fewer logical premises one assumes, the stronger is one's conclusion.
In his article "Sensations and Brain Processes" (1959), J. J. C. Smart invoked Occam's razor with the aim to justify his preference of the mind-brain identity theory over spirit-body dualism. Dualists state that there are two kinds of substances in the universe: physical (including the body) and spiritual, which is non-physical. In contrast, identity theorists state that everything is physical, including consciousness, and that there is nothing nonphysical. Though it is impossible to appreciate the spiritual when limiting oneself to the physical, Smart maintained that identity theory explains all phenomena by assuming only a physical reality. Subsequently, Smart has been severely criticized for his use (or misuse) of Occam's razor and ultimately retracted his advocacy of it in this context. Paul Churchland (1984) states that by itself Occam's razor is inconclusive regarding duality. In a similar way, Dale Jacquette (1994) stated that Occam's razor has been used in attempts to justify eliminativism and reductionism in the philosophy of mind. Eliminativism is the thesis that the ontology of folk psychology including such entities as "pain", "joy", "desire", "fear", etc., are eliminable in favor of an ontology of a completed neuroscience.
Penal ethics[edit]
In penal theory and the philosophy of punishment, parsimony refers specifically to taking care in the distribution of punishment in order to avoid excessive punishment. In the utilitarian approach to the philosophy of punishment, Jeremy Bentham's "parsimony principle" states that any punishment greater than is required to achieve its end is unjust. The concept is related but not identical to the legal concept of proportionality. Parsimony is a key consideration of the modern restorative justice, and is a component of utilitarian approaches to punishment, as well as the prison abolition movement. Bentham believed that true parsimony would require punishment to be individualised to take account of the sensibility of the individual—an individual more sensitive to punishment should be given a proportionately lesser one, since otherwise needless pain would be inflicted. Later utilitarian writers have tended to abandon this idea, in large part due to the impracticality of determining each alleged criminal's relative sensitivity to specific punishments.[58]
Probability theory and statistics[edit]
Marcus Hutter's universal artificial intelligence builds upon Solomonoff's mathematical formalization of the razor to calculate the expected value of an action.
There are various papers in scholarly journals deriving formal versions of Occam's razor from probability theory, applying it in statistical inference, and using it to come up with criteria for penalizing complexity in statistical inference. Papers[59][60] have suggested a connection between Occam's razor and Kolmogorov complexity.[61]
One of the problems with the original formulation of the razor is that it only applies to models with the same explanatory power (i.e., it only tells us to prefer the simplest of equally good models). A more general form of the razor can be derived from Bayesian model comparison, which is based on Bayes factors and can be used to compare models that don't fit the observations equally well. These methods can sometimes optimally balance the complexity and power of a model. Generally, the exact Occam factor is intractable, but approximations such as Akaike information criterion, Bayesian information criterion, Variational Bayesian methods, false discovery rate, and Laplace's method are used. Many artificial intelligence researchers are now employing such techniques, for instance through work on Occam Learning or more generally on the Free energy principle.
Statistical versions of Occam's razor have a more rigorous formulation than what philosophical discussions produce. In particular, they must have a specific definition of the term simplicity, and that definition can vary. For example, in the Kolmogorov–Chaitin minimum description length approach, the subject must pick a Turing machinewhose operations describe the basic operations believed to represent "simplicity" by the subject. However, one could always choose a Turing machine with a simple operation that happened to construct one's entire theory and would hence score highly under the razor. This has led to two opposing camps: one that believes Occam's razor is objective, and one that believes it is subjective.
Objective razor[edit]
The minimum instruction set of a universal Turing machine requires approximately the same length description across different formulations, and is small compared to the Kolmogorov complexity of most practical theories. Marcus Hutter has used this consistency to define a "natural" Turing machine of small size as the proper basis for excluding arbitrarily complex instruction sets in the formulation of razors.[62] Describing the program for the universal program as the "hypothesis", and the representation of the evidence as program data, it has been formally proven under Zermelo–Fraenkel set theory that "the sum of the log universal probability of the model plus the log of the probability of the data given the model should be minimized."[63] Interpreting this as minimising the total length of a two-part message encoding model followed by data given model gives us the minimum message length (MML) principle.[59][60]
One possible conclusion from mixing the concepts of Kolmogorov complexity and Occam's razor is that an ideal data compressor would also be a scientific explanation/formulation generator. Some attempts have been made to re-derive known laws from considerations of simplicity or compressibility.[64][65]
According to Jürgen Schmidhuber, the appropriate mathematical theory of Occam's razor already exists, namely, Solomonoff's theory of optimal inductive inference[66]and its extensions.[67] See discussions in David L. Dowe's "Foreword re C. S. Wallace"[68] for the subtle distinctions between the algorithmic probability work of Solomonoff and the MML work of Chris Wallace, and see Dowe's "MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness"[69] both for such discussions and for (in section 4) discussions of MML and Occam's razor. For a specific example of MML as Occam's razor in the problem of decision tree induction, see Dowe and Needham's "Message Length as an Effective Ockham's Razor in Decision Tree Induction".[70]
Controversial aspects of the razor[edit]
Occam's razor is not an embargo against the positing of any kind of entity, or a recommendation of the simplest theory come what may.[a] Occam's razor is used to adjudicate between theories that have already passed "theoretical scrutiny" tests and are equally well-supported by evidence.[b] Furthermore, it may be used to prioritize empirical testing between two equally plausible but unequally testable hypotheses; thereby minimizing costs and wastes while increasing chances of falsification of the simpler-to-test hypothesis.
Another contentious aspect of the razor is that a theory can become more complex in terms of its structure (or syntax), while its ontology (or semantics) becomes simpler, or vice versa.[c] Quine, in a discussion on definition, referred to these two perspectives as "economy of practical expression" and "economy in grammar and vocabulary", respectively.[72]
Galileo Galilei lampooned the misuse of Occam's razor in his Dialogue. The principle is represented in the dialogue by Simplicio. The telling point that Galileo presented ironically was that if one really wanted to start from a small number of entities, one could always consider the letters of the alphabet as the fundamental entities, since one could construct the whole of human knowledge out of them.
(source : https://en.wikipedia.org/wiki/Occam%27s_razor )
Comments
Post a Comment